15.8, Triple Integrals in Spherical Coordinates

Example:

Let *E* be the solid in the first octant (i.e., where $x \ge 0$, $y \ge 0$, and $z \ge 0$) bounded by two spheres centered at the origin, the inner sphere with radius 1 and the outer sphere of radius 2. Find $\int \int_{F} (x^2 + y^2 + z^2)^{-3/2} dV$.

Note: If the integrand represents a density function, then this triple integral gives us the mass of the solid.

This problem is more easily solved if we use spherical coordinates. The integrand becomes $(\rho^2)^{-3/2}$, which simplifies to ρ^{-3} . dV becomes $\rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$. The boundaries of integration are as follows: θ varies from 0 to $\frac{\pi}{2}$. φ varies from 0 to $\frac{\pi}{2}$. ρ varies from 1 to 2. Thus, we get:

$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{1}^{2} \rho^{-3} \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{1}^{2} \rho^{-1} \sin \varphi \, d\rho \, d\varphi \, d\theta = \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \varphi \int_{1}^{2} \rho^{-1} d\rho \, d\varphi \, d\theta$$

$$\int_{1}^{2} \rho^{-1} d\rho = \ln|\rho| = \ln 2 - \ln 1 = \ln 2 - 0 = \ln 2.$$

Now we have $\int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \varphi \ln 2 \, d\varphi \, d\theta = \ln 2 \int_{0}^{\pi/2} \int_{0}^{\pi/2} \sin \varphi \, d\varphi \, d\theta$

$$\int_{0}^{\pi/2} \sin \varphi \, d\varphi = \left[-\cos \varphi \right]_{0}^{\pi/2} = \left[\cos \varphi \right]_{\pi/2}^{0} = \cos 0 - \cos(\pi/2) = 1 - 0 = 1$$

Now we have $\ln 2 \int_{0}^{\pi/2} d\theta = \ln 2[\theta]_{0}^{\pi/2} = \frac{\pi}{2} \ln 2$ or $\frac{\pi \ln 2}{2}$.

Digression: Before we consider our next example, let's digress for a moment. The equation $z^2 = x^2 + y^2$ is a circular cone whose top half lies above the *x*, *y* plane and whose bottom half lies below the *x*, *y* plane, along with the origin, (0,0), which of course lies *in* the *x*, *y* plane. The equation of the top half is $z = \sqrt{x^2 + y^2}$, and the equation of the bottom half is $z = -\sqrt{x^2 + y^2}$. In cylindrical coordinates, the equation of the top half is z = r, and the equation of the bottom half is z = -r.

We may refer to the top half of the cone as an "upward-opening cone," and to the bottom half of the cone as a "downward-opening cone." (However, it would be more precise to say "upward-opening *half*-cone" and "downward-opening *half*-cone.") Thus, z = r is an upward-opening cone and z = -r is a downward-opening cone.

In spherical coordinates, the equation of the top half is $\rho \cos \varphi = \rho \sin \varphi$, or $\sin \varphi = \cos \varphi$, or $\tan \varphi = 1$, or $\varphi = \frac{\pi}{4}$. The equation of the bottom half is $\rho \cos \varphi = -\rho \sin \varphi$, or $-\sin \varphi = \cos \varphi$, or $\tan \varphi = -1$, or $\varphi = \frac{3\pi}{4}$.

Let us generalize: In spherical coordinates, the equation $\varphi = k$ is an upward-opening cone when $k \in (0, \frac{\pi}{2})$, and is a downward-opening cone when $k \in (\frac{\pi}{2}, \pi)$.

Example:

Let *E* be the region between the sphere $\rho = 1$ (which is the upper boundary surface) and the upward-opening cone $\varphi = \frac{\pi}{3}$ (which is the lower boundary surface). Find $\iint_{F} (x^2 + y^2) dV$, using spherical coordinates.

We may write the integrand as r^2 , but *r* is not a spherical coordinate, so we further rewrite it as $\rho^2 \sin^2 \varphi$. We rewrite dV as $\rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$. The boundaries of integration are as follows: θ varies from 0 to 2π . φ varies from 0 to $\frac{\pi}{3}$. ρ varies from 0 to 1. Thus, we get:

$$\int_{0}^{2\pi} \int_{0}^{\pi/3} \int_{0}^{1} \rho^{2} \sin^{2}\varphi \ \rho^{2} \sin\varphi \ d\rho \ d\varphi \ d\theta = \int_{0}^{2\pi} \int_{0}^{\pi/3} \int_{0}^{1} \rho^{4} \sin^{3}\varphi \ d\rho \ d\varphi \ d\theta = \int_{0}^{2\pi} \int_{0}^{\pi/3} \sin^{3}\varphi \int_{0}^{1} \rho^{4} \ d\rho \ d\varphi \ d\theta$$

$$\int_{0}^{1} \rho^{4} \ d\rho = \frac{1}{5} [\rho^{5}]_{0}^{1} = \frac{1}{5}$$

Now we have $\int_{0}^{2\pi} \int_{0}^{\pi/3} \frac{1}{5} \sin^{3}\varphi \, d\varphi \, d\theta = \frac{1}{5} \int_{0}^{2\pi} \int_{0}^{\pi/3} \sin^{3}\varphi \, d\varphi \, d\theta.$

$$\int_{0}^{\pi/3} \sin^{3} \varphi \, d\varphi = \int_{0}^{\pi/3} \sin^{2} \varphi \, \sin \varphi \, d\varphi = \int_{0}^{\pi/3} (1 - \cos^{2} \varphi) \, \sin \varphi \, d\varphi =$$
$$-1 \int_{1}^{1/2} (1 - u^{2}) du = \int_{1}^{1/2} (u^{2} - 1) du = \left[\frac{1}{3}u^{3} - u\right]_{1}^{1/2} = \left(\frac{1}{24} - \frac{1}{2}\right) - \left(\frac{1}{3} - 1\right) = \frac{5}{24}$$

Now we have $\frac{1}{5} \int_{0}^{2\pi} \frac{5}{24} d\theta = \frac{1}{24} \int_{0}^{2\pi} d\theta = \frac{1}{24} [\theta]_{0}^{2\pi} = \frac{1}{24} (2\pi) = \frac{\pi}{12}.$