15.8, Triple Integrals in Spherical Coordinates

Example:

Let E be the solid in the first octant (i.e., where $x \geq 0, y \geq 0$, and $z \geq 0$) bounded by two spheres centered at the origin, the inner sphere with radius 1 and the outer sphere of radius 2. Find $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} d V$.

Note: If the integrand represents a density function, then this triple integral gives us the mass of the solid.

This problem is more easily solved if we use spherical coordinates. The integrand becomes $\left(\rho^{2}\right)^{-3 / 2}$, which simplifies to ρ^{-3}. $d V$ becomes $\rho^{2} \sin \varphi d \rho d \varphi d \theta$. The boundaries of integration are as follows: θ varies from 0 to $\frac{\pi}{2}$. φ varies from 0 to $\frac{\pi}{2} . \rho$ varies from 1 to 2 . Thus, we get:

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho^{-3} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho^{-1} \sin \varphi d \rho d \varphi d \theta=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin \varphi \int_{1}^{2} \rho^{-1} d \rho d \varphi d \theta \\
& \int_{1}^{2} \rho^{-1} d \rho=\ln |\rho|=\ln 2-\ln 1=\ln 2-0=\ln 2
\end{aligned}
$$

Now we have $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin \varphi \ln 2 d \varphi d \theta=\ln 2 \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \sin \varphi d \varphi d \theta$
$\int_{0}^{\pi / 2} \sin \varphi d \varphi=[-\cos \varphi]_{0}^{\pi / 2}=[\cos \varphi]_{\pi / 2}^{0}=\cos 0-\cos (\pi / 2)=1-0=1$.
Now we have $\ln 2 \int_{0}^{\pi / 2} d \theta=\ln 2[\theta]_{0}^{\pi / 2}=\frac{\pi}{2} \ln 2$ or $\frac{\pi \ln 2}{2}$.

Digression: Before we consider our next example, let's digress for a moment. The equation $z^{2}=x^{2}+y^{2}$ is a circular cone whose top half lies above the x, y plane and whose bottom half lies below the x, y plane, along with the origin, $(0,0)$, which of course lies in the x, y plane. The equation of the top half is $z=\sqrt{x^{2}+y^{2}}$, and the equation of the bottom half is $z=-\sqrt{x^{2}+y^{2}}$. In cylindrical coordinates, the equation of the top half is $z=r$, and the equation of the bottom half is $z=-r$.

We may refer to the top half of the cone as an "upward-opening cone," and to the bottom half of the cone as a "downward-opening cone." (However, it would be more precise to say "upward-opening half-cone" and "downward-opening half-cone.") Thus, $z=r$ is an upward-opening cone and $z=-r$ is a downward-opening cone.

In spherical coordinates, the equation of the top half is $\rho \cos \varphi=\rho \sin \varphi$, or $\sin \varphi=\cos \varphi$, or $\tan \varphi=1$, or $\varphi=\frac{\pi}{4}$. The equation of the bottom half is $\rho \cos \varphi=-\rho \sin \varphi$, or $-\sin \varphi=\cos \varphi$, or $\tan \varphi=-1$, or $\varphi=\frac{3 \pi}{4}$.

Let us generalize: In spherical coordinates, the equation $\varphi=k$ is an upward-opening cone when $k \in\left(0, \frac{\pi}{2}\right)$, and is a downward-opening cone when $k \in\left(\frac{\pi}{2}, \pi\right)$.

Example:

Let E be the region between the sphere $\rho=1$ (which is the upper boundary surface) and the upward-opening cone $\varphi=\frac{\pi}{3}$ (which is the lower boundary surface). Find $\iiint_{E}\left(x^{2}+y^{2}\right) d V$, using spherical coordinates.

We may write the integrand as r^{2}, but r is not a spherical coordinate, so we further rewrite it as $\rho^{2} \sin ^{2} \varphi$. We rewrite $d V$ as $\rho^{2} \sin \varphi d \rho d \varphi d \theta$. The boundaries of integration are as follows: θ varies from 0 to 2π. φ varies from 0 to $\frac{\pi}{3}$. ρ varies from 0 to 1 . Thus, we get:
$\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \rho^{2} \sin ^{2} \varphi \rho^{2} \sin \varphi d \rho d \varphi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \rho^{4} \sin ^{3} \varphi d \rho d \varphi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \sin ^{3} \varphi \int_{0}^{1} \rho^{4} d \rho d \varphi d \theta$
$\int_{0}^{1} \rho^{4} d \rho=\frac{1}{5}\left[\rho^{5}\right]_{0}^{1}=\frac{1}{5}$
Now we have $\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{5} \sin ^{3} \varphi d \varphi d \theta=\frac{1}{5} \int_{0}^{2 \pi} \int_{0}^{\pi / 3} \sin ^{3} \varphi d \varphi d \theta$.
$\int_{0}^{\pi / 3} \sin ^{3} \varphi d \varphi=\int_{0}^{\pi / 3} \sin ^{2} \varphi \sin \varphi d \varphi=\int_{0}^{\pi / 3}\left(1-\cos ^{2} \varphi\right) \sin \varphi d \varphi=$
$-1 \int_{1}^{1 / 2}\left(1-u^{2}\right) d u=\int_{1}^{1 / 2}\left(u^{2}-1\right) d u=\left[\frac{1}{3} u^{3}-u\right]_{1}^{1 / 2}=\left(\frac{1}{24}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right)=\frac{5}{24}$
Now we have $\frac{1}{5} \int_{0}^{2 \pi} \frac{5}{24} d \theta=\frac{1}{24} \int_{0}^{2 \pi} d \theta=\frac{1}{24}[\theta]_{0}^{2 \pi}=\frac{1}{24}(2 \pi)=\frac{\pi}{12}$.

